A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation
نویسندگان
چکیده
منابع مشابه
A Sinc-Collocation Method for Second-Order Boundary Value Problems of Nonlinear Integro-Differential Equation
1Department of Mathematics, Alzahra University, Tehran, Iran 2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, Iran (Received November07, 2011, accepted March 1, 2012) Abstract. The sinc-collocation method is presented for solving second-order boundary value problems of nonlinear integro-differential equation. The method is effective...
متن کاملA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملImpulsive Boundary-value Problems for First-order Integro-differential Equations
This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.06.020